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4. Concluding remarks 

It is safe to say that the preponderance of our present 
knowledge about the electron-microscope contrast 
behavior of defects in crystals was obtained using 
diffraction equations based upon the column approxi- 
mation. However, the use of these equations to describe 
defect contrast under high-resolution conditions is 
dangerous. In this paper we have demonstrated two 
ways (image shifting and fringing) in which the column- 
approximation equations fail to predict contrast for 
point and line defects. However, we have not discussed 
the visibility of the fringing. Our feeling is that if it can 
be resolved, it will most probably be visible in weak- 
beam images of point defects and very small precipitates. 
Of course, this question will only be answered by the 
experimentalist. In a future paper we will discuss the 
effect of the column approximation on the calculation 
of images of planar defects. 

The authors would like to thank Dr A. Lannes for 
helpful discussions, and Mr D. R. Wall and Ms B. J. 

Jones for assistance in the final preparation of this 
manuscript. 
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Abstract Introduction 

Centric and acentric cumulative distribution functions 
of the normalized structure amplitude, which explicitly 
account for the presence of outstandingly heavy atoms 
in crystals of any symmetry, have been derived. These 
cumulative distributions can now be readily evaluated 
for all triclinic, monoclinic and orthorhombic space 
groups, with the exceptions of Fdd2 and Fddd, and 
thus constitute an extension of the commonly employed 
cumulative distributions based on the Wilson statistics. 
Expected discrepancies between the distributions 
derived in this work and the corresponding Wilson-type 
distributions are illustrated, and their symmetry and 
composition dependence is discussed in view of relevant 
applications to intensity statistics. 
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The known methods of intensity statistics, which are 
applicable to the resolution of space-group ambiguities, 
can be classified into (A) computation of an experi- 
mental average of a function of the structure amplitude 
and comparison of this average with its theoretical 
expectation values for the possible space groups, and 
(B) comparison of experimental and theoretical dis- 
tributions of the normalized intensity or structure 
amplitude. Most existing methods of both classes are 
based on the Wilson (1949) statistics, according to 
which the structure amplitude from an equal-atom 
structure, with a large number of atoms in the unit 
cell, is normally distributed, the distribution parameters 
being different for the centrosymmetric and noncentro- 
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symmetric cases. The literature on this subject is 
quite extensive and much of it has recently been 
reviewed by Srinivasan & Parthasarathy (1976). 

It is well known that tests based on the Wilson 
(1949) statistics [e.g. the N(z)  test (Howells, Phillips 
& Rogers, 1950); averages of lEt and IE 2 - 11 (Karle, 
1976)] often give satisfactory results - even if the 
formal requirements of this statistics are not exactly 
observed. However, a difficulty such as, for example, 
the presence of an outstandingly heavy atom, may well 
lead to inconclusive or wrong results of such tests. 
An important development, within class A methods, 
has been made in the study of Foster & Hargreaves 
(1963a,b), who derived generalized moments of 
normalized intensity, which depend explicitly on the 
symmetry and composition of the crystal. The effect of 
disparity of atomic scattering powers on the intensity 
averages can thus be accounted for, and it has been 
demonstrated (e.g. Foster & Hargreaves, 1963b; 
Goldberg & Shmueli, 1971)that deviations of intensity 
moments, from their values predicted by the Wilson 
(1949) statistics, are correctly indicated by the gener- 
alized moment test. Foster & Hargreaves (1963b) 
evaluated the symmetry-dependent parts of the second 
and third moments of intensity for all triclinic, mono- 
clinic and orthorhombic space groups (except Fdd2 
and Fddd). 

There appears to be no equivalent development 
within class B methods. The most popular of these is 
the N(z)  cumulative distribution test (Howells et al., 
1950) but, as mentioned above, it too may give mis- 
leading indications when outstandingly heavy atoms 
are present in the structure. It was therefore thought 
desirable to derive symmetry- and composition- 
dependent cumulative distributions of IEI and to com- 
bine thereby the well known advantages of cumulative 
distributions over single expectation values with a 
generalized approach to intensity statistics, such as that 
of Foster & Hargreaves (1963a). The purpose of this 
paper is to derive and illustrate such cumulative dis- 
tribution functions of the normalized structure ampli- 
tude, for the centric as well as acentric cases. 

Derivation 

We wish to find expressions for the fraction of [El 
values, not exceeding a given IE'I, and require that 
these cumulative distribution functions depend on the 
composition of the asymmetric unit, i.e. that disparity 
of atomic scattering powers be allowed for, and on the 
symmetry of the crystal. Suitable probability density 
functions, showing the required dependence, were first 
given by Karle & Hauptman (1953) and by Hauptman 
& Karle (1953a), for the centrosymmetric and non- 
centrosymmetric cases respectively, in terms of the 
structure amplitude IFI, atomic scattering factors and 

moments of trigonometrical structure factors, which 
depend on crystal symmetry. In what follows, we shall 
use the corresponding probability density functions for 
the normalized structure amplitude I EI (e.g. H auptman 
& Karle, 1953b; Srinivasan & Parthasarathy, 1976). 
These functions can be written as 

\z~] I~ 2 ] 

× [1 + A(~IEI 4 - 21El / + 1) 

+B(~IEI 6 - -  IEI 4 + 3tEl 2 -  1) + ...1, (1) 

and 

Pa(IEI) = 21El exp ( - IEI  2) 11 + C(~[EI  4 -  21EJ 2 + 1) 

+ D(~IEI6--~IEt 4 + 3tEl 1 -  1) + ...1. (2) 

for the centric and acentric distributions respectively, 
where A, B, C and D are composition- and symmetry- 
dependent coefficients. All the above expansion terms 
will be retained in what follows. Explicit functional 
forms of these coefficients are given in the papers of 
Hauptman and Karle (see above). However, it appears 
more convenient for the present purpose to re-express 
these coefficients in terms of even moments of Igl, 
for which theoretical expressions are also available 
(Karle & Hauptman, 1953; Hauptman & Karle, 
1953a; Foster & Hargreaves, 1963a) and which were 
numerically evaluated for a large range of space groups 
(Foster & Hargreaves, 1963b). Equations (1) and (2) 
can thus be transformed to a form which is suitable for 
use in intensity statistics. The integrals to be evaluated 
for this purpose are (SEI'),, = J~ IEI4p,~(IEI)d IEI 
and ( I g l 6 ) a  : j-~o lEt6 P,~(IEI) dlEI, where st = e and 
st = a refer to probability density functions (1) and (2) 
respectively. We thus have 

A = ( ( IEr ' ) e - -  3)/8, (3) 

B = ((IEL6)c - 15(IEI4)c + 30)/48, (4) 

C =  ( ( I E l ' ) a - -  2)/2, (5) 

D =  ((IEI6)a - 9(IEla)a + 12)/6. (6) 

Equation (1), with A and B given by (3) and (4) 
respectively, is equivalent to the corresponding ex- 
pression for the probability density function of a 
centrosymmetric structure factor, given by Bertaut 
(1955). 

It is readily seen, as expected, that equations (1)and 
(2) tend to the corresponding Wilson-type distributions, 
as the moments of IEI tend to values expected from 
such distributions. Conversely, such values of (IE [ 4) 
and ( I E I 6 )  a re  approached as the number of (equal) 
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atoms in the asymmetric unit increases. Hence the 
symmetry- and composition-dependent terms in square 
brackets in (1)and (2) should be regarded as departures 
from the distributions which are based on the central 
limit theorem (Wilson, 1949, and references therein). 

We can now evaluate the required cumulative dis- 
tributions by integrating (1) and (2), using the coef- 
ficients A, B, C and D as given by (3), (4), (5) and (6) 
respectively. The integrations can be kept simple and 
concise results follow, when the polynomials in I EI 
appearing in equations (1) and (2) are expressed in 
terms of Hermite polynomials,* H,,(x).  The relevant 
identities are 

tEl 
~IEI 4 -  21EI 2 + 1 = ~ H 4 \ - ~ ]  , (7) 

and 

and 
E' 

N~(tE ' I )=  f Pa(IEL)dLEI 
o 

3 

= 1 - -  e x p ( - - I E ' l  2) + ~ anlH2,(O ) 
n=0 

- -  exp(--IE'  12) H2,,(IE' D)], (13) 

for the centric and acentric cumulative distribution 
functions of tE't  respectively, where 

C D 
a 0 ~ _ _ - - - -  + - -  

8 16 

C D 
a 2 =  - - + - - ,  32 64 

C D 
a I --  

8 32 '  

D 
a 3 =  

384 

, (+> l l e [ 6 - I E I  4 -k- 3 1 E l  2 -  1 = T~-~H6 \ 
42 ] 

to be used with (1), and 

½1El 5 -  21El 3 + IEI 

= ~ [ k n s ( I e l )  + H3(LEI)- H,(IEL)], (9) 

and 

~IEI4-{IEI  5 + 3 1 E 1 3 - 1 E l  

-- ~[-gn2(Iel)' ' + ~Hs( IEI ) - -~H3( IEI )  + 3H,(IEI)], 

(10) 

to be employed with (2). The calculation is performed 
with the aid of the known definite integral 

x 
f e - t 2 H , ( t ) d t = H , _ , ( O ) - e - X 2 H , _ , ( x )  (11) 
0 

(e.g. Hochstrasser, 1970). 

We thus obtain 

IE'I 

Nc(IE'I)= f Pc(LEI)d IEL 
o 

_ e r f ( IE ' l  2 exp( 12 
- 

x + - - H  s , (12) 

* A convenient transformation table is given by Abramovitz & 
Stegun (1970). 

and A, B, C and D are given by equations (3)-(6). 
It may now be pointed out that the first term on the 

RHS of (12) and the first two terms on the RHS of (13) 
are just the centric and acentric cumulative distribution 
functions of IE'I based on the Wilson (1949) statistics 
respectively. 

Evaluation of  cumulative distributions 

The dependence of even moments of intensity on 
crystal symmetry and composition, as given by Karle 
& Hauptman (1953), Hauptman & Karle (1953a) and 
Foster & Hargreaves (1963a), requires an evaluation 
of the moments of the trigonometrical structure factor 
for each space group in question. The most extensive 
compilation of these quantities, published to date, has 
been given by Foster & Hargreaves (I963b) who have 
listed composition-dependent expressions for (IFI2), 
(IFL 4) and <IFI 6> for all triclinic, monoclinic and 
orthorhombic space groups, except Fdd2 and Fddd  
which are anyway uniquely defined by their conditions 
for possible reflections. 

Noting that (LEI 4) = (IFI4>/<IFI2> 2 etc., we can 
write, following Foster & Hargreaves (1963b), 

S(4) 
( IEI  4) -- 3 + a $2(2) (14) 

S(4) S(6) 
< I E [  6> = 15 + b -  + c - - ,  (15) 

$2(2) $3(2) 

for centrosymmetric space groups, and 

S(4) 
(1EL 4> = 2 + a - - ,  (16) 

SZ(2) 
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S(4) S(6) 
( I E I 6 ) = 6  + b $2( 21 + c $3(2) (17) 

for noncentrosymmetric space groups, where 

t 

S ( p ) =  Z f~, (18) 
j = l  

fj  being the scattering factor of the j th atom, t the 
number of atoms in the asymmetric unit, and a, b and 
c are symmetry-dependent coefficients, evaluated from 
Table 1 of a Foster & Hargreaves (1963b) and listed 
below according to the relevant point groups: 

a b c Point group 

- 1  - 9  4 1 
- 1 . 5  - 2 2 . 5  10 i 
--0.5 - 4 . 5  1 2 or m 
- 0 . 7 5  - 1 1 . 2 5  2.5 2/m 
- 0 . 2 5  - 2 . 2 5  0-25 222 

0.25 2.25 - 2  mm2 
0.375 5.625 - 5  mmm. 

The cumulative distributions Nc(IE'I) and Na(IE'I) 
can now be explicitly evaluated for the above crystal 
symmetries. For example, N¢(IE'I) for space group 
P21/m is given by (12), with A and B defined by (3) and 
(4) which, in turn, depend o n  ( I E I  4) and (IEI 6) as 
given by (14) and (15) and the fourth row of the above 
table. 

We shall illustrate the effects of an outstandingly 
heavy atom and various crystal symmetries on the 
above distributions by means of a hypothetical and yet 
realistic example. Consider a crystal structure with 20 
carbon atoms and one heavier atom in the asymmetric 
unit, and let this atom be taken, in turn, as chlorine, 
bromine and iodine. The composition-dependent terms 
can be approximately evaluated assuming that the ratio 
of two scattering factors, for the same diffraction 
vector, is independent of sin 0/4. That is, 

S(4) 20re 4 + fx 4 20 + p4 

SZ(2) (20J~ c + f~x) z (20 + p2)2' 

where p = fx/fc ~- ZffZc and Z is the atomic number. 
Fig. l(a) and (b) displays the centric N~(IE'I) and 

acentric Na(IE'I ) distributions, given by (12) and (13) 
respectively, for Cz0I in the various symmetries listed 
above. In the case of i symmetry, the N~(IE'I) curve 
[Fig. 1 (a)] lies closer to the acentric than to the centric 
Wilson-type distribution and may thus be useful in 
resolving P1 vs P1 ambiguities. The result for 2/m 
[Fig. 1 (a)], if it represented an experimental distribution, 
would be classified as inconclusive, while the mmm 
curve [Fig. l(a)] does not differ greatly from the 
Wilson-type centric distribution. In the case of C/0Br, 
the only serious deviation appears to be that for the 

symmetry while for Cz0CI, both the Nc(IE'I ) and 

Na(IE'I ) distributions practically coincide with the 
corresponding Wilson-type distributions, for all 
symmetries considered. Qualitatively similar results, but 
with somewhat smaller deviations, were also obtained 
for a C25X asymmetric unit. 

The above example suggests that the use of the 
Nc(IE'I) distribution in actual statistical tests is likely 
to be of value, since the curves for 1 and 2/m sym- 
metries fall between the centric and acentric Wilson- 
type N(IE'I)  curves and the generalized distribution 
derived here may thus be helpful in resolving corres- 
ponding space-group ambiguities. The deviations ob- 
served in the various N,(iE' I) distributions [Fig. l(b)], 
in the monoclinic and triclinic symmetries, make these 
distributions look 'even more acentric' and hence 
practical tests with N,,(IE'I) curves are likely to be 
important in the case of very heavy atoms or a par- 
ticularly small number of light atoms in the asym- 
metric unit. In any case, equations (12) and (13) may 
serve as a useful extension of existing statistical tests 
which are routinely performed in the various programs 
for normalized structure amplitude calculation. 

Nc(IEI) 1 

_ 

0 . 5 -  

Na( IE I )  . 

0 5 -  

mmm ... ~ z ~  

0.5 I 0  IEI 

(a) 

v , , , O r 5  , v , ~ IvO ' ' ' ' 'IEI 

(b) 

Fig. 1. Comparison of the cumulative distributions (12) and (13) 
(dashed lines) with the Wilson-type centric and acentric 
N(IE ' I )  functions (solid lines) for C20I. (a) Nc(lE'l  ) for point 
groups 1, 2/m and mmm. (b) no(IE' I) for point groups 1, 2 (or m), 
222 and mm2. 
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It must be pointed out that the present results apply 
only to the case of atoms in general positions and, like 
most conventional statistical tests, they do not over- 
come the problems of possible hypersymmetry. In the 
case of light-atom hypersymmetric structures, use can 
be made of the cumulative distributions given by 
Lipson & Woolfson (1952) and Rogers & Wilson 
(1953) (cf. Goldberg & Shmueli, 1973), while for 
the case of outstandingly heavy atoms modified 
probability density functions and/or modified expres- 
sions for the higher moments of I EI are required. 

It should also be pointed out that the more extensive 
validity of the Wilson-type methods (more extensive 
than their underlying assumptions might lead one to 
expect) is probably due in part to the decrease of the 
correction terms in (14)-(17) with increasing sym- 
metry. This is indicated by the above example and may 
account for numerous successful outcomes of N(z) 
tests (Howells et al., 1950) carried out with moderately 
heavy atoms. 
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Abstract 

High-resolution measurements of diffuse X-ray scat- 
tering (DXS) have been made at and above room tem- 
perature around 111, 333, 444 and 555 reciprocal 
lattice points (relps) using highly collimated Mo K~t 1 
and Cu Ka~ radiations with the specimen set in (1, - 1 ,  
1) symmetrical Bragg geometry. The distribution of 
DXS intensity around different relps has shown that 
at temperatures up to at least 573 K the contribution 
of thermal DXS to the observed DXS is very small. 
This is apparently due to the high value of the Debye 
temperature (640 K) of silicon. A remarkable feature 
of these results is that for the same value of the scat- 
tering vector L K*L the DXS intensity is different for the 
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parallel and antiparallel orientations of K* relative to 
R*. The amount of anisotropy varied from sample to 
sample and depended on the thermal history of the 
specimen. This and the other features show that the 
observed DXS is predominantly due to point defects 
and their aggregates. A typical size parameter for the 
aggregates is 3000 to 10 000 A. 

I. Introduction 

Point defects, their aggregates and elastic thermal 
waves give diffuse X-ray scattering ( D X S ) f r o m  
regions of reciprocal space close to the reciprocal- 
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